Skip navigation

Matematika masih menjadi icon menakutkan untuk sebagian anak atau siswa. Salah satu hal yang memegang andil besar dalam pemikiran masyarakat yang seperti ini adalah berkembangnya mitos-mitos sesat seputar matematika di masyarakat. Diantara mitos-mitos tersebut, ada beberapa yang sudah mengakar dan menciptakan persepsi negatif terhadap matematika. Mitos tersebut yaitu:

1. Matematika adalah ilmu yang sangat sukar sehingga hanya sedikit orang yang atau siswa dengan IQ minimal tertentu yang mampu memahaminya.

2. Matematika adalah ilmu hafalan dari sekian banyak rumus.

3. Matematika selalu berhubungan dengan kecepatan menghitung.

4. Matematika adalah ilmu abstrak dan tidak berhubungan dengan realita.

5. Matematika adalah ilmu yang membosankan, kaku, dan tidak rekreatif.

Mitos-mitos inilah yang kemudian berimbas kepada motivasi belajar matematika siswa. Menurut Mc. Donald motivasi adalah perubahan energi dalam diri seseorang yang ditandai dengan munculnya feeling dan didahului dengan tanggapan adanya tujuan. Dalam kegiatan belajar, motivasi sangat diperlukan, sebab seseorang yang tidak mempunyai motivasi dalam belajar, tidak akan mungkin melakukan aktivitas belajar. Motivasi ada dua, yaitu motivasi intrinsik dan motivasi ekstrinsik.

· Motivasi Intrinsik merupakan motivasi yang ditimbulkan dari dalam diri individu sendiri tanpa adanya paksaan atau dorongan orang lain, tetapi atas dasar kemauan sendiri.

· Motivasi Ekstrinsik merupakan motivasi yang ditimbulkan akibat pengaruh dari luar individu, apakah karena ajakan, suruhan, atau paksaan dari orang lain, sehingga dengan keadaan demikian siswa mau untuk belajar.

Akan sangat baik jika kedua motivasi yaitu motivasi intrinsik dan motivasi ekstrinsik seimbang dan saling mendukung. Dan kita sebagai calon pendidik harus dapat menumbuhkan motivasi pada siswa. Salah satu cara untuk dapat menumbuhkan motivasi, yaitu dengan menggunakan metode yang bervariasi dan menggunakan media yang baik dan sesuai dengan tujuan pembelajaran.

Hal di atas juga sesuai dengan impliksi teori perkembangan Piaget dalam pembelajaran, yaitu:

1. Bahasa dan cara berpikir anak berbeda dengan orang dewasa.

2. Anak-anak akan belajar dengan baik jika lingkungan baik.

3. Bahan yang diajarkan hendaknya dirasa baru tetapi tidak asing.

4. Memberi peluang agar anak belajar sesuai tahap perkembangannya.

5. Dalam kelas diberi peluang untuk berdiskusi dengan teman-temannya.

Teori Piaget di atas kemudian dikembangkan oleh Zoltan P. Dienes yaitu seorang matematikawan yang memusatkan perhatiannya pada cara-cara pengajaran terhadap siswa. Menurt Dienes permainan matematika sangat penting, sebab operasi matematika dalam permainan tersebut menunjukkan aturan secara konkret dan lebih membimbing dan menajamkan pengertian matematika pada anak didik.

Dapat dikatakan bahwa objek-objek konkret dalam bentuk permainan mempunyai peranan sangat penting dalam pembelajaran matematika jika dimaipulasi dengan baik. Menurut Dienes, konsep-konsep matematika akan berhasil jika dipelajari dalam tahap-tahap tertentu.

Dienes membagi tahap-tahap belajar menjadi enam tahap, yaitu:

1. Permainan Bebas (Free Play)

Permainan ini merupakan tahap belajar konsep yang aktifitasnya tidak terstruktur dan tidak diarahkan.

2. Permainan yang menggunakan aturan (Games)

Permainan yangd isertai aturan, siswa mulai meneliti pola-pola dan keteraturan yang terdapat dalam konsep tertentu.

3. Permainan kesamaan Sifat (Searching for communalities)

Dalam mencari kesamaan sifat siswa mulai diarahkan dalam kegiatan menemukan sifat-sifat kesamaan dalam permainaan yang sedang diikuti.

4. Permainan Representasi (Representation)

Representasi adalah tahapan pengambilan sifat dari beberapa situasi yang sejenis. Siswa menentukan representasi dari konsep-konsep tertentu.

5. Permainan dengan simbolisasi (Symolization)

Simbolisasi termasuk tahap belajar konsep yang membutuhkan kemampuan merumuskan representasi dari setiap konsep-konsep dengan menggunakan simbol matematika atau melalui perumusan verbal.

6. Formalisasi (Formalization)

Formslisasi merupakan tahap belajar konsep yang terakhir. Dalam tahap ini siswa dituntut untuk mengurutkan sifat-sifat konsep, kemudian merumuskan sifat-sifat baru konsep tersebut.

Dalam permainan biasanya ada yang dimainkan secara individu ataupun kelompok. Adapun kriteria dalam pengelompokan yaitu:

1. Sesuai dengan kesenangan berkawan (sesuai keinginan siswa)

2. Berdasarkan kemampuan (anak-anak yang berprestasi terseber dibeberapa kelompok, sehingga dalam satu kelompok, kemampuan siswa beragam, mulai dari yang paling menonjol. Dan disini diharapkan adanya tukar pengetahuan, semacam tutor sebaya)

3. Berdasarkan minat

Proses belajar ada beberapa, diantaranya tipe belajar Problem Solving (belajar memecahkan masalah). Tipe belajar ini siswa belajar merumuskan dan memecahkan masalah (memberikan respons terhadap rangsangan yang menggambarkan atau membangkitkan situasi problematik), dengan menggunakan berbagai rule yang telah dikuasainya. Menurut John Dewey dalam bukunya How We Think, proses belajar pemecahan masalah itu berlangsung sebagai berikut:

a) Become aware of the problem (menyadari adanya masalah)

b) Clarifying and defining the problem (menegaskan dan merumuskan masalahnya)

c) Searching for facts and formulating hypotheses (mencari fakta pendukung dan merumuskan masalah)

d) Evaluasi proposed solution (mengevaluasi alternatif pemecahan yang dikembangkan)

e) Experimental verification (mengadakan pengujian atau verifikasi secara eksperimental, uji coba)

Sekarang ini tidak hanya Problem Solving saja, tetapi sudah beralih menjadi Creative Problem Solving (CPS), yaitu suatu model pembelajaran yang berpusat pada ketrampilan pemecahan masalah yang diikuti dengan penguatan kreatifitas Tahapan CPS menurut Osborn ada tiga, yaitu:

1. Menemukan fakta, melibatkan penggambaran masalah, menggumpulkan dan meneliti data dan informasi yang bersangkutan.

2. Menemukan gagasan, berkaitan dengan memunculkan dan memodifikasi gagasan tentang strategi pemecahan masalah.

3. Menemukan solusi, yaitu proses evaluatif sebagai puncak pemecahan masalah.

Rangkaian proses belajar mengajar pasti haruslah ada proses evaluasi untuk dapat dilihat sejauh mana pencapaian tujuan. Pengukuran ini dapat dilihat dengan melakukan tes atau ujian. Macam Tes hasil belajar dapat dibedakan menjadi dua macam, yaitu tes formative dan tes summative.

Tes formative adalah tes yang diadakan sebelum pelajaran berlangsung. Tujuan dari tes formative ini adalah agar guru dapat membuat perencanaan untuk membantu siswa dalam proses belajar mengajar dan untuk membantu guru, dalam menganalisa kemampuan siswa tentang suatu pokok bahasan tertentu sudah sejauh mana. Dalam kasus ini, guru merencanakan membantu siswa untuk mengenali bidang datar.

Tes Summative adalah tes yang diselenggarakan pada akhir kegiatan belajar mengajar. Tes ini bertujuan agar guru dan siswa mengetahui tentang seberapa jauh hasil yang telah dicapai selama satu pokok bahasan.

Sumber:

· http://www.sigmetris.com

· http://www.bruderfic.or.id

· Ermawati. 2007. “Teori Belajar Menurut J. Piaget, Robert M. Gagne, dan J. P. Guilford”. (Makalah)

· Cita Jayanti, dkk. 2007. ”Teori Belajar”. ( Makalah )

· Semiawan, Conny, dkk. 1987. Pendekatan Ketrampilan Proses Bagaimana Mengaktifkan Siswa dalam Belajar. Jakarta : Gramedia.

· Makmun, Abin Syamsuddin. 2004. Psikologi Kependidikan. Bandung: Remaja Rosdakarya.

· Rumini, Sri, dkk . 2006. Psikologi Pendidikan. Yogyakarta : UNY Press.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: